XMedia: Web People Search by Clustering with Machinely Learned Similarity Measures
نویسندگان
چکیده
In this paper we present an approach to person name disambiguation that clusters documents on the basis of textual features using cosine similarity and a machinely learned meta similarity measure. The approach achieves an F-measure of B-Cubed Precision and Recall of 0.74 on the Clustering Subtask for WePS-2. Such task consists of clustering a set of documents that mention an ambiguous person name according to the actual entities referred to that name.
منابع مشابه
A Web Search Engine-Based Approach to Measure Semantic Similarity between Words
easuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an ...
متن کاملA Web Search Engine-based Approach to Measure Semantic Similarity between Words
Measuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملImpact of Similarity Measures on Web-page Clustering
Clustering of web documents enables (semi-)automated categorization, and facilitates certain types of search. Any clustering method has to embed the documents in a suitable similarity space. While several clustering methods and the associated similarity measures have been proposed in the past, there is no systematic comparative study of the impact of similarity metrics on cluster quality, possi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009